ES详解 - 原理:ES原理知识点补充和整体结构
ElasticSearch整体结构
通过上文,在通过图解了解了ES整体的原理后,我们梳理下ES的整体结构
ElasticSearch整体结构
- 一个 ES Index 在集群模式下,有多个 Node (节点)组成。每个节点就是 ES 的Instance (实例)。
- 每个节点上会有多个 shard (分片), P1 P2 是主分片, R1 R2 是副本分片
- 每个分片上对应着就是一个 Lucene Index(底层索引文件)
- Lucene Index 是一个统称
- 由多个 Segment (段文件,就是倒排索引)组成。每个段文件存储着就是 Doc 文档。
- commit point记录了所有 segments 的信息
补充:Lucene索引结构
上图中Lucene的索引结构中有哪些文件呢?
Lucene的索引结构
更多的文件接口可以参考这里:链接
文件的关系如下:
补充:Lucene处理流程
上文图解过程,还需要理解Lucene处理流程, 这将帮助你更好的索引文档和搜索文档。
Lucene处理流程
创建索引的过程:
- 准备待索引的原文档,数据来源可能是文件、数据库或网络
- 对文档的内容进行分词组件处理,形成一系列的Term
- 索引组件对文档和Term处理,形成字典和倒排表
搜索索引的过程:
- 对查询语句进行分词处理,形成一系列Term
- 根据倒排索引表查找出包含Term的文档,并进行合并形成符合结果的文档集
- 比对查询语句与各个文档相关性得分,并按照得分高低返回
补充:ElasticSearch分析器
上图中很重要的一项是语法分析/语言处理, 所以我们还需要补充ElasticSearch分析器知识点。
分析 包含下面的过程:
- 首先,将一块文本分成适合于倒排索引的独立的 词条 ,
- 之后,将这些词条统一化为标准格式以提高它们的“可搜索性”,或者 recall
分析器执行上面的工作。 分析器 实际上是将三个功能封装到了一个包里:
- 字符过滤器 首先,字符串按顺序通过每个 字符过滤器 。他们的任务是在分词前整理字符串。一个字符过滤器可以用来去掉HTML,或者将 & 转化成 and。
- 分词器 其次,字符串被 分词器 分为单个的词条。一个简单的分词器遇到空格和标点的时候,可能会将文本拆分成词条。
- Token 过滤器 最后,词条按顺序通过每个 token 过滤器 。这个过程可能会改变词条(例如,小写化 Quick ),删除词条(例如, 像 a, and, the 等无用词),或者增加词条(例如,像 jump 和 leap 这种同义词)。
Elasticsearch提供了开箱即用的字符过滤器、分词器和token 过滤器。 这些可以组合起来形成自定义的分析器以用于不同的目的。
内置分析器
Elasticsearch还附带了可以直接使用的预包装的分析器。接下来我们会列出最重要的分析器。为了证明它们的差异,我们看看每个分析器会从下面的字符串得到哪些词条:
"Set the shape to semi-transparent by calling set_trans(5)"
- 标准分析器
标准分析器是Elasticsearch默认使用的分析器。它是分析各种语言文本最常用的选择。它根据 Unicode 联盟 定义的 单词边界 划分文本。删除绝大部分标点。最后,将词条小写。它会产生
set, the, shape, to, semi, transparent, by, calling, set_trans, 5
- 简单分析器
简单分析器在任何不是字母的地方分隔文本,将词条小写。它会产生
set, the, shape, to, semi, transparent, by, calling, set, trans
- 空格分析器
空格分析器在空格的地方划分文本。它会产生
Set, the, shape, to, semi-transparent, by, calling, set_trans(5)
- 语言分析器
特定语言分析器可用于 很多语言。它们可以考虑指定语言的特点。例如, 英语 分析器附带了一组英语无用词(常用单词,例如 and 或者 the ,它们对相关性没有多少影响),它们会被删除。 由于理解英语语法的规则,这个分词器可以提取英语单词的 词干 。
英语 分词器会产生下面的词条:
set, shape, semi, transpar, call, set_tran, 5
注意看 transparent
、 calling
和 set_trans
已经变为词根格式。
什么时候使用分析器
当我们 索引 一个文档,它的全文域被分析成词条以用来创建倒排索引。 但是,当我们在全文域 搜索 的时候,我们需要将查询字符串通过 相同的分析过程 ,以保证我们搜索的词条格式与索引中的词条格式一致。
全文查询,理解每个域是如何定义的,因此它们可以做正确的事:
- 当你查询一个 全文 域时, 会对查询字符串应用相同的分析器,以产生正确的搜索词条列表。
- 当你查询一个 精确值 域时,不会分析查询字符串,而是搜索你指定的精确值。
例如:
ES中每天一条数据, 按照如下方式查询:
GET /_search?q=2014 # 12 results
GET /_search?q=2014-09-15 # 12 results !
GET /_search?q=date:2014-09-15 # 1 result
GET /_search?q=date:2014 # 0 results !
为什么返回那样的结果?
date
域包含一个精确值:单独的词条 2014-09-15。_all
域是一个全文域,所以分词进程将日期转化为三个词条: 2014, 09, 和 15。
当我们在 _all
域查询 2014,它匹配所有的12条推文,因为它们都含有 2014 :
GET /_search?q=2014 # 12 results
当我们在 _all
域查询 2014-09-15,它首先分析查询字符串,产生匹配 2014, 09, 或 15 中 任意 词条的查询。这也会匹配所有12条推文,因为它们都含有 2014 :
GET /_search?q=2014-09-15 # 12 results !
当我们在 date 域查询 2014-09-15,它寻找 精确 日期,只找到一个推文:
GET /_search?q=date:2014-09-15 # 1 result
当我们在 date 域查询 2014,它找不到任何文档,因为没有文档含有这个精确日志:
GET /_search?q=date:2014 # 0 results !